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Investigation of the stability of fluid flows in plane pipes [l] is usually associated with the 
Jnvsstigstion of the behavior, in tJms, of sn infinite periodic wave of the form C)(Y) axp i 
(kx - 02) where k Je reel. The relation between o and k is found from the condition of ex- 
istence of a no&hid solution of a boundary value 

p” 
oblem for 4(r) and is defined by a 

multivdned analytic fun&on k Go). It was shown in 1 and 21 that the function k Iw) has 
only one branch k, &IA giving reel valnes of k whan hu o > 0. This branch corresponds to 
the pertnrbatfona pmpsgating downstream. Earlier [3] ths author oompoted the function k 1 
(0) for real w for the case of flowa of an incompressible fluid at large Reynolds’ numbers. 
It is easily 8een that the behavior of k&(o) will not be greatly aftered when the ffaid Jo com- 
pressible, provided that its compressibJlity is sufficiently smell. 

The ccmdition of instability of the flow in a pipe of large but finite length, can be reduced 
to the fact [3 aad i] thst Eq. 

I= f& (0) - ke (of] = 0 (iI 
has solutions o whco Im o > 0, The expression k,(o) Jn (1) will, for the time being, denote 
the branch bf k (0) defining the wave number of some perturbation propagating upstream. We 
shall show that in the cue of weakly compressible flows with high Reynolds numbem the 
above condition of Jnstability holds, provided that the breach corre8pondJng to acoustic os- 
cill8tJons propagating upstream Ja taken as k,(o). 

If, either the fInid is compressible or the pipe walla are elastic, then acoustic or Zhukov- 
8kiJ wave8 msy be 84t up and propagate along it. Their wavelength will, for the given fre- 
q.nency, be Jnvemely pmportional to the compressibility of the fluid and the walls. When the 
wavelength become8 large, we csn neglect the transverse velocity and pressure gradient 
components. Excess pressure at some CKI~E section will be proportional to the exe488 of 
mus per unit length of the pipe, so that 

1 

irpp = ik,p& f 
!i udy (21 
-1 

when, k, lprd Q) are ths wave number and fmqoanay of the givsrr wave, pa is the dsnoity of 
the fluid, a Js the velocity of propa@on of the perturbations 8nd I( is the IongitudJtul com- 
ponent of the velocity perturbation. In derivJng (21, we have l aaomed that o/k,*> II. 

FunctJon u(y) 88tisfJe8 Eq. 
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u” (y) = - idIu+iR*~ 
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where R is the Reynolds’ number. Let us normalize u(y) so, that 
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(3) 
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thdy=i (4 
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Then the solution of (3) satisfying the zero boundary conditions can be written as 

ch v--R y 

ch ,‘- ioR 1 
Inserting (5) into (41, we obtain the following expression relating o and k, 

Since acoustic waves decay in a viscous fluid (see Eq. (7) below), we find that when 
Im o > 0, then the inequality Im k, < 0 should hold for the wave propagating upstream. WC 

know [l snd 31 that the values of w lying on the upper complex semi-plane for which Im kt 
(01 < 0, vary with increasing R in such a manner, that oR + 00 as R + m. Therefore, at high 
values of R it is sufficient to consider Eqs. (1) and (6) only for those values of O, for 

which wR >> 1. Then (6) yields the following relation for a wave moving upstream 

k 

where we take the arithmetic branch of the root, contained in - n 12 < arg o < 3?r /2. 

When a -B m, w is arbitrary and Im o > 0, k, -, 0 and approaches the point k = 0 from the 

lower semi-plane. Therefore, at sufficiently large values of a and R, Eq. (1) has roots o in 

the upper semi-plane and the flow is unstable. 
Eq. (I) used to establish the natural frequencies of perturbations in the pipe, assumes 

for an incompressible fluid the limit form 

Im k, (0) = 0 (31 
The latter coincides with the equation for’the complex frequency of an infinite periodic 

wave. This equation together with the inequality Im ti > 0 is usually employed [l] as the 
criterion of instability of the flow in a m infinite pipe. It should however be noted, that in the 
case of an incompressible fluid, the existence of the branch k,(o) s 0 is not sufficient to 

justify writing (1) in the form of (8) directly, without putting a + ma. This is caused by the 
fact that the G.I. Petrovskii condition postulated by the author in the derivation of (1) in 
[d, is not valid in the case of an incompressible fluid. (Petrovskii condition statem, that 
fm k f 0 if Im o is sufficiently large for all perturbations, and it ensures the correctnem of 
the statement of the Cauchy’s problem). 

We also note that the solutions r&(y) of the Orr-Sommerfeld equation corresponding to the 
branch k, (0) 5 0 Cannot be assumed to be eigenfnnctions, since they only need to satisfy 
the condition (b ‘(f l)= 0 on each wall, and the condition of impermeability k r$(& 1) = 0 
does not restrict 46 in any way. 

From (4) it follows that the perturbations corresponding to k,(w) ore related to the rate 
of change of the flow of fluid, and the latter becomes independent of x when a = OS. 

In the case when the boundary conditions at the ends of the pipe exclude the possibility 
of altering the rate of flow or, when the acoustic wave and the wave corresponding to k,(w) 
cannot generate esch other by reflection from the pipe ends (e.g. due to the difference in 
symmetry, since the corranponding stream functions in y are even and odd respectively), then 
the branch k,(o) neede not be considered and can be replaced in (1) with another branch of 
k(o) cotrcapondlng to the perturbations moving upstream. Snch an eqnation was atodied in 
f3] for an incomprcosible fluid and we mhowed that at high Reynolds’ numbers it has no 



solutions o in the upper semi-plane, i.e. under the given conditions, flows with fixed rete 
of flow are not globally 141 unstable. 

When the pipe is of infinite length and the Reynolds’ number is sufficiently high, the 
instability of the flow is removable, so that if the initial perturbation is bounded in space, 
then for c * -, the perturbations tend to zero at any fixed point [S]. Thus, ends of the pipe 
which may alter the rate of flow destabilize the flow of a weakly compressible fluid, and at 
high R this leads to instability. On the other hand, flows which maintain the constant rate, 
remain stable. 
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